A Review on the Lactic Acid Bacteria Probiotic in the Control of Coccidiosis, Campylobacteriosis, and Salmonellosis in Broiler Chickens

M. Royan*

*Correspondence E-mail: m.royan@abrii.ac.ir

© 2010 Copyright by Islamic Azad University, Rasht Branch, Rasht, Iran

Online version is available on: www.ijas.ir

ABSTRACT

Roles of probiotic microorganisms in digestive physiology are contributed to enhancing animals health and reducing the incidence of gastrointestinal diseases. Banning the use of antibiotics as growth promoters in poultry in many countries has been contributed to the increasing use of probiotics because long-term use of antibiotics causes antibiotic resistance of pathogenic bacteria in poultry and subsequently in the man, the vaccines are also costly. Salmonellosis, campylobacteriosis and coccidiosis infections are the most common intestinal diseases in the poultry industry. The pathogens causing these diseases are Salmonella enteritidis, Campylobacter jejuni, and Eimeria tenella, respectively. Probiotics are able to control these diseases. Certainly, controlling the causes of these disease outbreaks will promote the public health. On the other hand, the probiotics increase bird resistance against the invasion of Eimeria that may lead to protect against coccidiosis. This review deals to the potential of lactic acid probiotic bacteria to control coccidiosis, campylobacteriosis and salmonellosis.

KEY WORDS broilers, campylobacteriosis, coccidiosis, salmonellosis, probiotic.

INTRODUCTION

Control and prevention of diseases such as coccidiosis, salmonellosis, and campylobacteriosis in the poultry industry are particularly important. Coccidiosis is the most common diseases in broilers, and salmonellosis and campylobacteriosis are two food-borne important diseases in human caused from food animals. Iran's climate is appropriate for the spread of the coccidiosis and has caused great economic losses in the poultry industry (Baba Ahmadi et al. 2009). This disease is caused by a parasite known as Eimeria. The parasite multiplies in the digestive system, and leads to the mortality, malabsorption and reduced growth in the broilers and decreased egg production in laying hens (Lillehoj et al. 2004).

Drugs and live vaccine are two main methods to control this disease. However, due to problems caused by long-term consumption of medicines and high cost of vaccines, the use of more effective and safer methods are needed (Dalloul and Lillehoj, 2006; Williams, 2006). On the other hand, Salmonella and Campylobacter are the agents of the most important food-borne infectious diseases in humans and the poultry products are the most important sources of human infection with these bacteria. Gram-negative bacterium Campylobacter jejuni is the pathogen of this intestinal food borne disease. Since the ban on the use of antibiotic growth stimulants in Europe, problems caused by Salmonella have increased. It was reported that 24% of the examined broiler flocks were positive for Salmonella colonization (European Food Safety Authority, 2007).
The studies conducted by Iranian researchers representing between 35 and 54 percent of Salmonella contamination of poultry flocks in different provinces of Iran (Khannazer and Firouzi, 1998; Soltan Dallal, 2007; Shapouri et al. 2009). It was suggested several antibiotic resistances in Salmonella isolates from poultry in Iran (Asadpour et al. 2014).

Following the Banning antibiotics as growth promoters (AGPs) in the broiler industry, probiotic bacteria could be suitable alternatives to replace AGPs. Probiotics are live microbial supplements that have beneficial effects on the host animal by improving the intestinal microbial balance (Fuller, 1989). Variety of microbial species, including Lactobacillus, Streptococcus, Aspergillus, Candida, Saccharomyces and Bacillus have beneficial effects on performance, microflora, inhibiting pathogens and modifying the immune system in poultry (Zulkifli et al. 2003; Kabir et al. 2005; Karimi Kivi et al. 2015; Pourakbari et al. 2016; Pournazari et al. 2017; Seidavi et al. 2017). By using probiotics, stimulation the acquired immune changes, in the microbiome of the cecum and the production of inhibiting metabolites such as organic acids are the possible mechanisms to reduce pathogens in the digestive tract (Neal-McKinney et al. 2012).

Coccidiosis control by lactic acid bacteria probiotics

Coccidiosis is a disease of global emissions and despite using antibiotics and the sanitation and vaccination operations in the control and prevention of the disease, coccidiosis is still considered one of the greatest challenges in the poultry industry (Dalloul and Lillehoj, 2006). The protozoan parasites of the genus Eimeria are amplified in the gastrointestinal tract of broiler chickens, leading to tissue damage, reduced growth and increased susceptibility to pathogens (Cook, 1998).

So far, nine species of Eimeria have known as the agents of coccidiosis disease. Among these species, three species, including E. tenella, E. brunetti and E. necatrix have a high pathogenicity and have been identified as causes of the clinical form of disease, whereas E. maxima and E. acervulina are moderate pathogenic forms which cause subclinical disease (Adib Nishaboori et al. 2006). The clinical form of disease has symptoms such as watery to bloody diarrhea, anemia, and loss of appetite, weakness and wasting. However, the subclinical form of the disease adversely affects the growth and feed conversion ratio (Adib Nishaboori et al. 2006). Adib Nishaboori et al. (2006) studied the coccidiosis outbreaks in flocks of laying hens in the Mashhad city (North East of the country) and reported the spread of 47% E. acervulina, 53% E. maxima, 41% E. necatrix, and 35% E. tenella.

In another study in the Mashhad city, Razmi and Klideri (2000), studied the prevalence of subclinical coccidiosis in broiler and reported a 38% incidence of coccidiosis, such that the percent of infected farms with E. acervulina, E. maxima and E. tenella were 97%, 41%, and 12%, respectively. In a study in the west of Iran (Hamadan province), Ghaderkhani et al. (2014) reported 31.8% coccidiosis incidence, and 54.3%, 75.7%, and 20% for prevalence of E. tenella, E. necatrix and E. maxima, respectively. A mixture of Eimeria species was observed in all the infected farms. Hamidinejat et al. (2010) reported a 31.5% incidence of coccidiosis in Khuzestan province (Southwest) in Iran. The use of anti-coccidiosis drugs and vaccination methods are the common methods to control coccidiosis.

Studies have shown that Lactobacillus species isolated from different parts of the gastrointestinal tract of poultry are able to inhibit invasion of Eimeria tenella, in vitro (Tierney et al. 2004) as well as in vivo studies confirm that probiotics reduce the intestinal lesions caused by Eimeria (Lan et al. 2004; Lee et al. 2007b). Ghasemi et al. (2010) reported that using Biomim IMBO symbiotic, which is a combination of Enterococcus faecium bacteria and inulin prebiotic has a protective role against coccidiosis in broilers. Primalac, commercial lactic acid bacteria probiotic in the diet of broiler chickens from birth to three weeks of age stimulated the intestinal epithelial lymphocytes, and significantly (about 75%) reduced the E. acervulina oocytes (Dalloul et al. 2003). In studies on the effects of commercial probiotics in broiler chickens under the challenge of E. tenella and E. acervulina, the Mitomax commercial probiotic (Pediococcus acidilactici and Saccharomyces boulardii) 10-38% decreased the prevalence of oocytes and increased the level of antibodies against Eimeria in broiler chickens (Lee et al. 2007a). The MitoGrow probiotics (Pediococcus acidilactici) increased the levels of antibodies against Eimeria, however, had no effect on the prevalence of the oocytes (Lee et al. 2007b).

Concurrent use of poly-star probiotic and coccidiosis vaccine leads to a protective effect against Eimeria acervulina and E. maxima, resulting in improved bird performance and condition of the intestine (Ritzi et al. 2016). In a recent study, a probiotic compound containing 4 strains of lactic acid (L. acidophilus, L. fermentum, L. Planetarium and Enterococcus faecium) significantly reduced the intestinal ulcers caused by Eimeria, decreased the expression level pro-inflammatory cytokines such as interleukin and level of gene expression (IL) -1β, IL-6, and interferon (IFN) -γ significantly increased the anti-inflammatory cytokine IL-10 gene expression (Chih-Yuan et al. 2016). Some studies on the effect of probiotics on coccidiosis control are presented in Table 1.
The summarized results of some studies on the effect of probiotics on coccidiosis control

<table>
<thead>
<tr>
<th>Reference</th>
<th>Probiotic bacteria</th>
<th>The probiotic name</th>
<th>The observed effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giannenas et al. (2012)</td>
<td>Enterococcus faecium 589, Bifidobacterium animalis 503, Lactobacillus reuteri 514 and multi-species probiotic BIOMIN GmbH</td>
<td>Multi-species probiotic BIOMIN GmbH</td>
<td>In the absence of in-feed anticoccidial drugs, treatment with probiotics could alleviate the impact of E. tenella infection in chicken, help to maintain enteric health and minimize the risk and spread of coccidiosis. Effect of probiotics in oocyst shedding was significantly lower than that exhibited by lasalocid.</td>
</tr>
<tr>
<td>Giannenas et al. (2014)</td>
<td>Enterococcus faecium 589, Bifidobacterium animalis 503 and Lactobacillus salivarius 505</td>
<td>PoultryStar®</td>
<td>Probiotic groups presented lesion score values and oocyst numbers that were lower than in control infected birds, but higher than in the lasalocid group. In the duodenum, jejunum and ileum, the highest villus height values were presented by probiotic groups.</td>
</tr>
<tr>
<td>Chih-Yuan et al. (2016)</td>
<td>Lactobacillus acidophilus (LASW), L. fermentum (LF33), L. plantarum (LPL05) and Enterococcus faecium (TM39)</td>
<td>Infant feces</td>
<td>Four LAB strains were equally combined into a multistrain formula termed as MF. Seven days post challenge it was found that feeding MF could reduce the cecal lesion scores (LS) of the Eimeria infected chickens. In addition, for chickens in the MF group, the levels of cecal gene expression of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and interferon (IFN)-γ, were found significantly lower, while anti-inflammation cytokine, ie, IL-10, was higher than those of the chickens in the infected group.</td>
</tr>
<tr>
<td>Lee et al. (2007b)</td>
<td>Pediococcus based probiotic</td>
<td>MitoGrow</td>
<td>In E. acervulina-infected birds, the MG 0.1 group improved weight gain and reduced oocyst shedding in birds infected with 5000 E. acervulina oocysts. In E. tenella-infected birds, Eimeria-specific antibody levels were higher in the MitoGrow-fed groups, especially in the MG 0.1 birds, compared with the regular diet group. Pediococcus acidilacti based probiotic effectively enhances the resistance of birds and partially protects against the negative growth effects associated with coccidiosis.</td>
</tr>
<tr>
<td>Dalloul et al. (2003)</td>
<td>Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium thermophilum, and Enterococcus faecium</td>
<td>Primalac</td>
<td>Fecal oocyst shedding was lowest in (control+p) birds. Feeding the probiotic reduced shedding oocysts. The data demonstrate for the first time a probiotic-enhanced immunity in vitamin A deficient bird.</td>
</tr>
</tbody>
</table>

Role of lactic acid bacteria to prevent campylobacteriosis

The *Campylobacter* infection has called campylobacteriosis and has global emission, so that *Campylobacter jejuni* is one of the main causes of enteritis in children in developed and developing countries and birds, especially poultry are the major source of human infection (Baserisalehi et al. 2007). *Campylobacter jejuni* is a common commensal microorganism in broiler chickens which do the colonization in the cecum (Waldenstrom et al. 2001). Chicken meat contamination with the bacterium occurs during processing. As a result, a high rate of infection is due to contact with infected poultry carcasses and consumption of contaminated products. *Campylobacter jejuni* is a major cause of diarrhea in Iranian children and the pathogen has been observed in almost 8% of children with acute diarrhea symptoms (Feizabadi et al. 2007). Mokhtarian et al. (2009) examined the contamination of poultry carcasses in Gonabad city (east of Iran) industrial slaughterhouse and reported that 31% of the samples were positive for *Campylobacter jejuni* and *Campylobacter coli*. Havaei et al. (2007) tested the prevalence of *Campylobacter jejuni* and *Campylobacter coli* in the feces of broilers in Isfahan province (middle of Iran) and observed 31% outbreaks in the feces of poultry.

Rahimi and Tajbakhs (2008) examined the Campylobacter contamination of different meats and reported the following infection rates of 68.4%, 56.1%, 27.4% and 11.7% quail, chicken, turkey and ostrich, respectively.

Zendehbada et al. (2013) reported that chicken, quail, turkey are the main sources of *Campylobacter* infection in humans and 96.6% of the isolates of *Campylobacter* were resistant to one or more antibiotics.

Rahimi et al. (2010) reported *Campylobacter* bacterial infection and antibiotic resistance in poultry carcasses during processing in Ahvaz city in south of Iran and found that 55.4% of the carcasses were contaminated. The sensitivity tests on these samples to 10 antibiotics were showed that 92.9% of the samples were resistant to one or more antibiotics and the resistance to tetracycline at a rate of 78.3% was more common than others. Probiotics such as *Lactobacillus* bacteria are capable of preventing colonization of *C. jejuni* in the intestinal tract through the competitive eliminating (Gaggia et al. 2011). The competitive inhibition of *C. jejuni* by *Lactobacillus* is performed through several key mechanisms such as competition for binding sites (Wine et al. 2009), co-aggregation with pathogens (Schachtsiek et al. 2004), the production of antimicrobial substances, production of hydrogen peroxide (Zhao et al. 2006) and lactic acid (Neal-McKinney et al. 2012).

Saint-Cyr et al. (2017) reported that administration of *Lactobacillus salivarius* SMXD51 isolated from the intestinal tract of poultry have anti *Campylobacter* effect and significantly reduced the pollution in the intestinal contents of broilers.
Baffoni et al. (2012) reported that feeding a synbiotic compound contains galacto-oligosacharide prebiotic and Bifidobacteria longum subsp PCB133 to broilers for 14 days resulted in a significant reduction of Campylobacter jejuni in the feces of birds.

The in vitro and in vivo studies of Ghareeb et al. (2012) have shown that the combination of specific probiotic of poultry (including Enterococcus faecium, Pediococcus acidilactici, Lactobacillus reuteri and Lactobacillus salivarius) isolated from the digestive tract of broiler chickens had antimicrobial activity resulting in reduced colonization of Campylobacter jejuni in ceca of broilers. Jayaraman et al. (2013) reported that Bacillus subtilis PB6 isolated from the gut of healthy chickens that produce antimicrobial substances can be used to control different strains of Campylobacter.

Neal-McKinney et al. (2012) reported that Lactobacillus crispatus JCM5810 isolated from chicken feces had probiotic properties on in vitro and in vivo tests and was able to reduce the colonization of Campylobacter jejuni in the gastrointestinal tract of broiler chickens. The bacteria used in the experiment were selected among 4 strains of Lactobacillus bacteria and the lactic acid produced by the bacteria was known as the inhibitory agent against Campylobacter jejuni. It has been proven that the probiotic even if added to the diet 7 days prior to slaughter can be effective, which makes the probiotics affordable for manufacturers.

Results of some studies on the effect of probiotics on campylobacteriosis control were presented in Table 2.

The role of lactic acid bacteria to prevent salmonellosis

Salmonella is one of the most common causes of foodborne infectious diseases in the world (Addis and Sisay, 2015). Poultry meat products are the most important sources of Salmonella infections in human (Higgins et al. 2007; Carter et al. 2009). Salmonellosis is mostly caused by moving serotypes, especially Salmonella enteritidis and Salmonella typhimurium, (Abboudi, 2001; Soltan Dallah 2007; Shapouri et al. 2009). Clinical syndromes caused by Salmonella are divided into two main groups typhoid fever and non-typhoid salmonellosis. The non-typhoid Salmonella have isolated from almost all the animal groups and the poultry and their products are the most important source of human infection and endemic disease in Iran (Soltan Dallah, 2007; Shapouri et al. 2009). Salmonella not only is a pathogen, but also it has the ability to cause on disease in animals and poultry and only be a member of the intestinal microbial population (Knap et al. 2011). Sometimes the Salmonella colonization does not affect the body weight or performance of the chicken, however, this asymptomatic can increase the risk of infection transmission to humans through the food chain (Carter et al. 2009).

It is known that antibiotics used as growth promoters (AGP) lead to a reduction of Salmonella colonies (Dibner and Richards, 2005). In the United States between 1998 and 2006, only 10.9 to 16.3 percent of broiler chickens were positive for Salmonella contamination (USDA, 2007). In recent years, concerns about antibiotic resistance have increased (Barza, 2002; Cui et al. 2005). Identification of Salmonella resistant to several antibiotics, leading to major concerns about the safety of the foods (Callaway et al. 2008). The indiscriminate use of antibiotics in poultry flocks is very common in Iran, resulted in the emergence of Salmonella resistant to antibiotics (Akbarian et al. 2012).

Several studies indicate that Salmonella infection rates in poultry flocks of Iran were 19.5-40% (Khannazar and Firouzi, 1998). But the contamination rate in meat and meat products was different in different regions and different years. Akbarian et al. (2012) collected samples from 150 region and broiler breeder, layers and broiler flocks of different ages and also hatchery factories and slaughterhouse in different areas of Iran and found that the highest rates of Salmonella infection at a rate of 32% was related to broiler chicken flocks. Use of commercial probiotic supplements on the competitive elimination of Salmonella, such as Aviguard and BROILACT, significantly reduced the colonization of Salmonella in broilers (Nakamura et al. 2002). Different types of probiotic products such as single-strain or multi-strain probiotics are able to reduce the Salmonella infection in poultry, however, the multi-strain probiotics have been more successful (Timmerman et al. 2004; Chapman et al. 2011).

The FloraMax-B11 a commercial lactic acid bacteria based probiotic consisting of 11 bacteria belonging to the genus Lactobacillus has been one of the most successful strategies against Salmonella in the poultry industry, which is used in drinking water (Higgins et al. 2008; Vicente et al. 2008; Prado-Rebolledo et al. 2016).

In general, lactic acid producing bacteria, accelerate the development of a normal microflora in the intestines of chickens and turkey, this leads to increased resistance to Salmonella infection (Tellez et al. 2012). A combination of Lactobacillus salivarius and Enterococcus faecium PXN33 excluders was an effective competitive inhibitor for Salmonella in poultry and over a course of 43 days usage resulted in a reduction of Salmonella colonization in the ileum, colon and cecum of broiler chicken (Carter et al. 2017). The in vitro study of these bacteria showed that reducing the acidity caused by the lactic acid produced by the bacteria caused the Salmonella inhibition, in vitro (Carter et al. 2017). Marietto-Goncalves (2014) reported that the use of Lactobacillus probiotics in broilers infected with the Salmonella typhimurium resulted in removal of the pathogen by increasing blood heterophiles.
metabolite, reuterin, which has antimicrobial activity. Special attention because the bacteria produce a particular
increased the recovered pathogens in the cecal contents. An hour after challenge with B. longum subsp. Longum (PCB133), pos-
sessing in vitro antimicrobial activity against C. jejuni. C. jejuni concentration in poultry feces was significantly reduced in chickens administered with the synbiotic mixture.

In the inhibition of Salmonella, use of L. reuteri needs a special attention because the bacteria produce a particular
metabolite, reuterin, which has antimicrobial activity against Salmonella, E. coli and Campylobacter (Mulder et al. 1997).

Vicente et al. (2008) reported the use of commercial probiotic FM-B11 for 3 days in the drinking water of broilers
unlike the other Lactobacillus cultures, in ovo injection of L. reuteri had no negative effects on the hatchability and
reduced the Salmonella and E. coli colonies after hatching. In addition, deaths due to exposure to Salmonella and E. coli were reduced in the hatchery (Edens et al. 1997). Lactobacillus plantarum has receptors sensitive to mannose which is something unusual in Gram-positive bacteria. Because of this receptor Lactobacillus plantarum can compete with gram-negative pathogenic bacteria for the intestinal

<p>| Table 2 | The summarized results of some studies on the effect of probiotics on campylobacteriosis control |</p>
<table>
<thead>
<tr>
<th>Reference</th>
<th>Probiotic bacteria</th>
<th>Bacteria origin</th>
<th>The observed effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mañes-Lázaro et al. (2017)</td>
<td>Lactobacillus johnsonii FI9785</td>
<td>Poultry</td>
<td>Two levels of L. johnsonii FI9785 administrated a week apart reduced C. jejuni colonization in the caecal contents, however this biocontrol seemed dependent upon a high level of early colonization by the probiotic. The microbial population in the chicken gut was altered by the probiotic treatment. The results showed the potential of L. johnsonii FI9785 as a competitive exclusion factor in poultry against C. jejuni.</td>
</tr>
<tr>
<td>Baffoni et al. (2012)</td>
<td>B. longum subsp. Longum (PCB133)</td>
<td>Adult</td>
<td>The galactooligosaccharide was combined with B. longum subsp. longum PCB133, possessing in vitro antinfectious activity against C. jejuni. C. jejuni concentration in poultry feces was significantly reduced in chickens administered with the synbiotic mixture.</td>
</tr>
<tr>
<td>Saint-Cyr et al. (2017)</td>
<td>Lactobacillus salivarius SMXD51</td>
<td>Chicken ceca</td>
<td>A significant reduction of 2.81 log in Campylobacter loads was observed and 73% of chickens treated with the culture exhibited Campylobacter loads below 7 log10 cfu/g.</td>
</tr>
</tbody>
</table>
| Cean et al. (2015) | Lactobacillus paracasei J. R. L. rhamnosus 15b, L. lactis Y, and L. lactis FOa | Human | The four probiotic strains had a significant effect on C. jejuni invasion of chicken primary cells, with the strongest inhibitory effect detected when a combination of four was admin-
istered. These four new probiotic strains are able to cause modifications in the chicken intestinal mucosa and can reduce the ability of C. jejuni to invade, in vitro, and to colon-
ize, in vivo. |
| Ghareeb et al. (2012) | Enterococcus faecium, Pediococcus acidilactici, Lactobacillus salivarius, and Lactobacillus reuteri | Chicken gut | 1-d-old broiler chicks received 2 mg/bird per day of a multispecies probiotic product via the drinking water. Probiotic treatment reduced cecal colonization by C. jejuni at both 8 and 15 d postchallenge. |
| Nishiyama et al. (2014) | Lactobacillus gasseri SBT2055 (LG2055) | Human feces | In vitro study: Reduction in the number of C. jejuni cells adhering to and internalized by human epithelial cells demonstrated that LG2055 is an organism that effectively and competitively excludes C. jejuni. In vivo: chicks treated with LG2055 had significantly reduced cecum colonization by C. jejuni. The results of the colonization assay suggest that treatment with LG2055 could be useful in suppressing C. jejuni colonization of the chicks at early growth stages. |
| Neal-McKinney et al. (2012) | L. crispatus | Chicken isolates | The lactic acid produced by L. crispatus IC5810 inhibits C. jejuni growth and coloniza-
tion in vitro and in vivo. L. crispatus most effectively inhibited the growth of all C. jejuni strains tested when compared with L. acidophilus, L. gallinarum and L. helveticus. |

<p>| Table 3 | The summarized results of some studies on the effect of probiotics on salmonellosis control |</p>
<table>
<thead>
<tr>
<th>Reference</th>
<th>Probiotic bacteria</th>
<th>The observed effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olnood et al. (2015)</td>
<td>Lactobacillus johnsonii</td>
<td>L. johnsonii (109 cfu/chick) was administered to chicks individually by oral gavage on days 1, 3, 7 and 12. The chicks were individually challenged with S. sofia (107 cfu/chick) by oral gavage on d 2, 8 and 13. L. johnsonii reduced the number of S. sofia in the gut environment. The probiotic strain L. johnsonii may increase the VFA concentration after inoculation.</td>
</tr>
<tr>
<td>Carter et al. (2017)</td>
<td>Lactobacillus salivarius 59 and Enterococcus faecium PXN-33</td>
<td>1 × 10^7 cfu of probiotic and 5 × 10^7 cfu of S. enteritidis (at day 2). Colonization of poultry by Salmonella enteritidis S1400 is reduced by combining administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN-33.</td>
</tr>
</tbody>
</table>
| Youssef et al. (2011) | Lactobacillus. acidophilus | Incorporation of probiotic and/or prebiotic with vaccination with live attenuated S. typhi-
murium vaccine gave better results in decreasing the percentage of S. typhimurium resis-
tation from the internal organs of the chickens than in case of vaccination alone. |
| Mountzouris et al. (2009) | Crop (Lactobacillus reuteri), jejunum (Enterococcus faecium), ileum (Bifidobacterium animalis) caecum (Pediococcus acidilactici) and Lactobacillus salivarius | Microbiological analysis of cecal digesta in 42-d-old broilers revealed that while broilers in treatment C+ were 100% Salmonella positive, the broilers in treatments probiotic were 50% positive and in addition they had lower Salmonella levels (cfu/g digesta) by 2.7 logs com-
pared to C+. |
junction sites, which leads to the reduction of *Salmonella* infection in poultry (Bengmark, 2001). Table 3 summarizes the results of some studies on the effect of probiotics on salmonellosis.

CONCLUSION

Creating a balanced flora in the gastrointestinal tract and stimulating the immune system have attributed to the use of probiotics. Several studies have provided clear evidence that certain strains of probiotics can stimulate several aspects of innate immunity as well as humoral immunity. According to experiments conducted on probiotics as an alternative to antibiotics, it appears that probiotics have the ability to inhibit important pathogens of poultry industry including *Salmonella*, *Campylobacter* and coccidiosis. It can be said that there is a positive effect of multi-strain probiotics and the combination of probiotics and prebiotics in controlling pathogens.

REFERENCES

Gaggia F., Di Gioia D., Baffoni L. and Biavati B. (2011). The role of protective and probiotic cultures in food and feed and their

