Polymorphism of some Genes Associated with Meat-Related Traits in Egyptian Sheep Breeds

Document Type : Research Article


1 Department of Cell Biology, National Research Center, Dokki, Giza, Egypt

2 Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt

3 Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt


The genetic polymorphism of some genes related to meat production in three Egyptian sheep breeds (Barki, Rahmani and Osseimi) was studied. The candidate genes were: Calpastatin, Myostatin, Diacylglycerol-acyltransferase1, Insulin-like growth factor binding protein-3 and Booroola fecundity gene. The technique applied was the restriction fragment length polymorphism for the polymerase chain reaction products. Polymorphism was found in the genes: Calpastatin, MyostatinandDiacylglycerol-acyltransferase 1, while no polymorphism was exhibited by the other two genes, Insulin-like growth factor binding protein-3 and the Booroola fecundity in the three breeds understudy. Calpastatin locus digested with MspI had two genotypes MM and MN. The highest allelic frequency was for allele M. The same locus Calpastatin digested with NcoI also exhibited two genotypes MM and MN. The NN genotype was absent with both the MspI and the NcoI enzymes in all breeds. Myostatin digested with DraI had two genotypes AB and BB. The AA genotype cannot be detected. The highest allelic frequency was for allele B. Diacylglycerol-acyltransferase1 digested with AluI showed two genotypes CC and CT. The highest allelic frequency was for allele C. The detected CT genotype might explain the moderate intramuscular fat content and muscle marbling in the Egyption sheep breeds. Each of the remaining two loci (Insulin-like growth factor binding protein-3 and the Booroola fecundity) had only one genotype, BB genotype for Insulin-like growth factor binding protein-3 digested with HaeIII and ++ genotype for the Booroola fecundity digested with AvaII enzyme, therefore they are not recommended in the selection program. The result of Chi-square analysis indicated that the three Egyptian sheep breeds were in Hardy-Weinberg equilibrium.


Abouheif M.A., Al-Owaimer A.N., Shafey T.M. and Al Shaikh M.A. (2011). Polymorphism of Booroola FecB gene in prolific individual from Najdi and Naeimi sheep breeds of Saudi Arabia. J. Anim. Vet. Adv. 10, 1262-1264.
Aboul-Ela M.B., Aboul-Naga A.M., Shalaby T.H. and Maijala K. (1987). Physiological response to climatic changes in Finnish Landrace ewes imported to Egypt and their half-sibs raised in Finland. Livest. Prod. Sci. 17, 179-185.
Al-Barzinji Y.M.S. and Othman G.U. (2013). Genetic polymorphism in FecB gene in Iraqi sheep breeds using RFLP-PCR Technique. IOSR-JAVS. 2(4), 46-48.
Ali B.A., EL-Hanafy A.A. and Salem1 H.H. (2009). Genetic biodiversity studies onIGFBP3 gene in Egyptian sheep breeds. Biotechnol. Anim. Husband. 25(1), 101-109.
Andersson L. (2001). Genetic dissection of phenotypic diversity in farm animals. Nat. Rev. Genet. 2, 130-138.
Bale I.K. and Conover C.A. (1992). Regulation of insulin like growth factor binding protein 3 messenger ribonucleic acid expression by insulin like growth factor-1. Endocrinology. 131, 608-614.
Byun S.O., Zhou H., Forrest R.H., Frampton C.M. and Hickford J.G. (2008). Association of the ovine calpastatin gene with birth weight and growth rate to weaning. Anim. Genet. 39, 572-573.
Cases S., Smith S.J., Zheng Y.W., Myers H.M. and Lear S.R. (1998). Identification of a gene encoding an acyl CoA diacyglcerol acyltransferase, a key enzyme in triacyglcerol synthesis. Proc. Natl. Acad. Sci. 95, 13018-13025.
Chu M.X., Liu Z.H., Jiao C.L., He Q.Y., Fang L., Ye S.C., Chen G.H. and Wang J.Y. (2007). Mutations in BMPR-IB and BMP15 genes are associated with litter size in small tailed Han sheep (Ovis aries). J. Anim. Sci. 85, 598-603.
Chung H.Y., Davis M.S. and Hines H.C. (2001). Effect of calpain and cal-pastatin genotypes on growth of Angus bulls. Pp. 181-201 in Ohio State University Extension Research Bulletin. Special Circular. USA.
Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., Bouix J., Caiment F., Elsen J.M., Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C. and Georges M. (2006). A mutation creating a potential illegitimate micro RNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38, 813-818.
Cui J.X., Zeng Y.Q., Wang H., Chen W., Du J.F., Chen Q.M., Hu Y.X. and Yang L. (2011). The effects of DGAT1 and DGAT2 mRNA expression on fat deposition in fatty and lean breeds of pig. Livest. Sci. 140, 292-296.
Davis G.H. (2004). Fecundity genes in sheep. Anim. Reprod. Sci. 82, 247-253.
Diyono R., Sumantri C. and Farajallah A. (2007). Detection of ovine calpastatin gene polymorphisms within indonesian local sheep population using PCR-RFLP and its effect on body weight. MS Thesis. Livestock Technology and Production Program, Bogor, Indonesia.
El-Hanafy A.A. and El-Saadani M.A. (2009). Fingerprinting of FecBgene in five Egyptian sheep breeds. Biotechnol. Anim. Husband. 25, 205-212.
Elshennawy M. (1995). Sheep development program in Egypt, in Strategies for sheep and goat breeding. Pp. 27-32 in Strategies for Sheep and Goat Breeding. D. Gabiña, Ed. Zaragoza, Spain.
FAO. (2007). Food and Agriculture Organization of the United Nations the State of Food Insecurity in the World.
FAOSTAT. (2011). FAO Statistical Yearbook. WorldFood and Agriculture. United Nations the State of Food Insecurity in the World.
Gabor M.A., Trakovická A. and Miluchová M. (2009). Analysis of polymorphism of CAST gene and Clpg gene in sheep by PCR-RFLP method. J. Zoot. Biotehnol. 42, 470-476.
Galal S.E., Metawib H.R.M., Aboul-Nagab A.M. and Abdel-Aziz A.I. (1996). Performance of and factors affecting the small-holder sheep production system in Egypt. Small Rumin. Res. 19, 97-102.
Galal S., Abdel Rasoul F., Anous M.R. and Shaat I. (2002). On-Station Characterization of Small Ruminant Breeds in Egypt, (ICARDA), Aleppo, Syria.
Galal S., Abdel-Rasoul F., Anous M.R. and Shaat I.M. (2005). On station characterization of small ruminant breeds in Egypt. Pp. 141-193 in Characterization of Small Ruminant Breeds in West Asia and North Africa. L. Iniguez, Ed. ICARDA, Leppo, Syria.
Guan F., Liu S., Shi G. and Yang L. (2006). Polymorphism of FecB gene in nine sheep breeds or strains and its effects on litter size, lamb growth and development. Anim. Reprod. Sci. 99, 44-52.
Hastie P.M., Onagbesan O.M. and Hareign W. (2004). Co-expression of messenger ribonucleic acids encoding IGFI, IGFII; type I and II IGF receptors and IGF-binding proteins (IGFBP1 to -6) during follicular development in the ovary of seasonally anoestrous ewes. Anim. Reprod. Sci. 84, 93-105.
Kamisaka Y., Kimura K., Uemura H. and Shibakami M. (2010). Activation of diacylglycerol acyltransferase expressed in Saccharomyces cerevisiae: overexpression of Dga1p lacking the N-terminal region in the Deltasnf 2 disruptant produces a significant increase in its enzyme activity. Appl. Microbiol. Biotechnol. 88, 105-115.
Kijas J.W., McCulloch R., Edwards J.E., Oddy V.H., Lee S.H. and van der Werf J. (2007). Evidence for multiple alleles effecting muscling and fatness at the ovine GDF8 Locus. BMC Genet. 8, 80-90.
Kumar P., Choudhary V., Ganesh K., Bhattacharya T.K., Bhushan B., Sharma A. and Mishra A. (2006). Nucleotide sequencing and DNA polymorphism studies on IGFBP3 gene in sheep and its comparison with cattle and buffalo. Small Rumin. Res. 64, 285-292.
Lewontin R.C. (1974). The Genetic Basis of Evolutionary Change. Columbia University Press, New York.
Liu L., Shi X., Bharadwaj K.G., Ikeda S., Yamashita H., Yagyu H., Schaffer J.E., Yu Y.H. and Goldberg I.J. (2009). DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J. Biol. Chem. 284, 36312-36323.
Liu L., Zhang Y., Chen N., Shi X., Tsang B. and Yu Y.H. (2007). Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J. Clin. Invest. 117, 1679-1689.
Maciulla J.H., Zhang H.M. and Denise S.K. (1997). A novel polymorphism in the bovine insulin-like growth factor binding protein-3 (IGFBP3) gene. Anim. Genet. 28, 375.
Miller S.A., Dykes D.D. and Polesky H.F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 12-15.
Mulsant P., Lecerf F., Fabre S., Schibler L., Monget P., Lanneluc I., Pisselet C., Riquet J., Mnniaux D. and Callebaut I. (2001). Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proc. Natl. Acad. Sci. 98, 5104-5109.
Nakev G., Stamberov P., Dimitrova I., Stancheva N., Georgieva S., Hristova D., Angelov G., Mehmedov T., Genova K. and Teneva A. (2013). Growth and development of skeletal muscle in connection with the expression of the Myostatin Gene (MSTN). Pp. 640-647 Proc. 10th Int. Symp. Modern Trend. Livest. Prod. Belgrade, Serbia.
Nassiry M.R., Mojtaba T., Ali J., Mahdi S. and Saheb F.F. (2006). Calpastatin polymorphism and its association with daily gain in Kurdi sheep. J. Iranian Biotechnol. 4, 188-192.
Nei M. and Kumar S. (2000). Molecular Evolution and Phylogenetics. Oxford University Press, New York.
Padma B., Kumar P., Choudhary V., Dhara S.K., Mishra A., Bhattacharya T.K., Bhushan B. and Sharma A. (2004). Nucleotide sequencing and PCR-RFLP of insulin-like growth factor binding protein-3 gene in riverine buffalo (Bubalus bubalis). Asian-australas J. Anim. Sci. 17, 910-913.
Palmer B.R., Robert N., Hickford J.G.H. and Bickerstaffe G. (1998). Rapid Communication: PCR-RFLP for MspI and NcoI in the ovine calpastatin gene. J. Anim. Sci. 76, 1499-1500.
Patel R.K., Chauhan J.B., Singh K.M. and Soni K.J. (2009). Genotype and allele frequencies of DGAT1 gene in Indian Holstein bulls. Current Trend Biotechnol. Pharm. 3(4), 386-389.
Roorda B.D., Hesselink M.K., Schaart G., Moonen-Kornips E., Martinez-Martinez P., Losen M., De Baets M.H., Mensink R.P. and Schrauwen P. (2005). DGAT1 over expression in muscle by in vivo DNA electroporation increases intramyocellular lipid content. J. Lipid Res. 46, 230-236.
Shahroudi F.E., Nassiry M.R., Valizadh R., Moussavi A.H., Pour M.T. and Ghiasi H. (2006). Genetic polymorphism at MTNR1A, CAST and CAPN loci in Iranian Karakul sheep. J. Iranian Biotechnol. 4, 117-122.
Sharma R.K., Blair H.T., Jenkinson C.M.C., Kenyon P.R., Cockrem J.F. and Parkinson T.J. (2012). Uterine environment as a regulator of birth weight and body dimensions of new born lambs. J. Anim. Sci. 90, 1338-1348.
Shukla A. (2001). PCR-RFLP studies on insulin-like growth factor binding protein 3 (IGFBP3) gene in cattle. MS Thesis. Deemed Univ., Izatnagar, Bareilly (UP), India.
Smith P., Hudson N.L., Corrigan K.A., Shaw L., Smith T., Phillips D.J. and McNatty P.J. (1996). Effects of the Booroola gene {FecB(B)} on body mass, testis development and hormone concentrations during fetal life. Reprod. Fertil. 2, 253-261.
Suleman M., Khan S.U., Riaz M.N., Yousaf M., Shah A., Ishaq R. and Ghafoor A. (2012). Calpastatin (CAST) gene polymorphism in Kajli, Lohi and Thalli sheep breeds. African J. Biotechnol. 11(47), 10655-10660.
Sumantri C., Diyono R., Farajallah A. and Inounu I. (2008). Polymorphism of calpastatingene and its effect on body weight of local sheep’s. JITV. 13, 117-126.
Sutikno Yamin M. and Sumantric C. (2011). Association of polymorphisms Calpastatin gene with body weight of local sheep in Jonggol, Indonesia. Media Peternakan. 34(1), 1-6.
Tohidi R., Elyasi G., Javanmard A., Shoja J., Rezaei R. and Pirahary O. (2013). Molecular analysis of ovine Calpastatin gene in six Iranian sheep breeds using PCR-RFLP. J. Anim. Prod. Adv. 3(9), 271-277.
Warner R.D., Greenwood P.L., Pethick D.W. and Ferguson D. (2010). Genetic and environmental effects on meat quality. Meat Sci. 86, 171-183.
Winter A., Krämer W., Werner F.A., Kollers S., Kata S., Durstewitz G., Buitkamp J., Womack J.E., Thaller G. and Fries R. (2002). Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl CoA: diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc. Natl. Acad. Sci. USA. 99(14), 9300-9305.
Xianglong L.I., Zhengzhu L., Rongyan Z., Guiru Z., Yuanfang G. and Lanhui L.I. (2008). Deletion of TTTTA in 5´UTR of goat MSTN gene and its distribution and genetic effect on body weight. Front. Agric. China. 2(1), 103-109.
Xu J.Y., Francis T., Mietkiewska E., Giblin E.M., Barton D.L., Zhang Y., Zhang M. and Taylor D.C. (2008). Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content . J. Plant. Biotechnol. 6(8), 799-818.
Yang J.T., Zang R.X., Liu W.J., Xu H.W., Bai J.L., Lu J.X. and Wu J.P. (2011). Polymorphism of a mutation of DGAT1 gene in four Chinese indigenous sheep breeds. Asian J. Anim. Vet. Adv. 6(5), 460-468.
Yao Y.C., Tian L., Han H.B., Chen X.H., Lu M.H., Guo P.C., Zhang C.F., Li N., Lian Z.X. and Li W. (2006). Preponderance genotype of BMPR-IB improves the pregnant rate of embryo-transfer in sheep. Prog. Biochem. Biophys. 33, 1074-1079.
Yeh F.C., Boyle T., Rongcai Y., Ye Z. and Xian J.M. (1999). POPGENE, Version 1.31. A Microsoft Window Based Free Ware for Population Genetic Analysis. University of Alberta, Edmonton.
Yu Z.Q., Yang B.H., Guo J., Lang X., Liu J.B., Cheng S.L. and Sun X.P. (2008). Polymorphism of GDF9 and FecB gene in two types of crossbred sheep and their effects on the litter size and body weight. China Herbivor. 2, 5-8.
Zhong F.G., Wang X.H., Li H., Liu S.R., Gan S.Q., Yang Y.L., Wang J.H. and Zhang Y.S. (2006). Study on the polymorphism of BMPR-IB gene associated with ovulations in Chinese Merino fecundity sheep. China Herbivor. 26, 5-6.
Zhou H., Hickford J.G. and Gong H. (2007). Polymorphism of the ovine calpastatin gene. Mol. Cel. Prob. 21, 242-244.