B and T-Cell Epitope Prediction of the OMP25 Antigen for Developing Brucella melitensis Vaccines for Sheep

Document Type: Research Article

Authors

Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Brucellosis, produced by Brucella species, is a disease that causes severe economic losses for livestock farms worldwide Due to serious economic and medical consequences of this disease, many efforts have been made to prevent the infection through the use of recombinant vaccines based on Brucella outer membrane protein (OMP) antigens. In the present study, a wide range of on-line prediction software was used to predict B and T-cells epitopes, secondary and tertiary structure and antigenicity OMP25 antigens. The bioinformatics approach used in the present study was validated by comparing its results with four available experimental epitope predictions. Bioinformatics analysis identified B-cell epitopes locations at amino acid (AA) residues 26-44, 59-79, 88-112, 146-166 and 175-202l and T-cell epitopes at AA residues 1-10, 14-22, 122-132, 154-162 and 206-213. All final B and T-cell predicted epitopes, except 1-10 and 14-22 residuals, showed antigenicity ability. Finally, a common B and T-cell epitope was identified at 154-162 of the OMP25 antigen. Bioinformatics analysis showed that this region has proper epitope characterization and so may be useful for producing recombinant vaccine.

Keywords


Almeida R.R., Rosa D.S. and Ribeiro S.P. (2012). Broad and cross-clade CD4 (+) T-cell responses elicited by a DNA vaccine encoding highly conserved and promiscuous HIV-1 M - group consensus peptides. PloS One. 7, 45267.

Berzofsky J.A. (1985). Intrinsic and extrinsic factors in protein antigenic structure. Science. 229(4717), 932-940.

Bryson C.J., Jones T.D. and Baker M.P. (2010). Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs. 24, 1-8.

Bui H.H., Peters B. and Assarsson E. (2007). B and T cell epitopes of influenza A virus, knowledge and opportunities. Proc. Natl. Acad. Sci. USA. 104(1), 246-251.

Buus S., Lauemøller S.L. and Worning P. (2003). Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach. Tissue. Antigens. 62(5), 378-384.

Cassataro J., Estein S.M. and Pasquevich KA. (2005). Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infect. Immunol. 73, 8079-8088.

Chen P., Rayner S. and Hu K.H. (2011). Advances of bioinformatics tools applied in virus epitopes prediction. Virologica. Sin. 26(1), 1-7.

Cloeckaert A., Verger J.M., Grayon M., Zygmunt M.S. and Grépinet O. (1996). Nucleotide sequence and expression of the gene encoding the major 25-kilodalton outer membrane protein of Brucella ovis: evidence for antigenic shift, compared with other Brucella species, due to a deletion in the gene. Infect. Immunol. 64(6), 2047-2055.

Cloeckaert A., Vizcaíno N., Paquet J.Y., Bowden R.A. and Elzer P.H. (2002). Major outer membrane proteins of Brucella species: past, present and future. Vet. Microbiol. 90, 229-247.

Commander N.J., Spencer S.A., Wren B.W. and MacMillan A.P. (2007). The identification of two protective DNA vaccines from a panel of five plasmid constructs encoding Brucella melitensis 16M genes. Vaccine. 25, 43-54.

Corbel M.J. and Brinley-Morgan W.J. (1984). Genus brucella Meyer and Shaw. Pp. 377-388 in Bergey's Manual of Systemic Bacteriology. N.R. Krieg, Ed. The Williams & Wilkins Co., Baltimore, MD.

Cutler S.J., Whatmore A.M. and Commande N.J. (2005). Brucellosis-new aspects of an old disease. J. Appl. Microbiol. 98, 1270-1281.

Devasundaram S., Deenadayalan A. and Raja A. (2014). In silico analysis of potential human T cell antigens from mycobacterium tuberculosis for the development of subunit vaccines against tuberculosis. Immunol. Invest. 43(2), 137-159.

Donnes P. and Elofsson A. (2002). Prediction of MHC classâ… binding peptides, using SVMHC. BMC Bioinform. 3, 25-31.

Dudek N.L., Perlmutter P., Aguilar M.I., Croft N.P. and Purcell A.W. (2010). Epitope discovery and their use in peptide based vaccines. Curr. Pharm. Des. 16, 3149-3157.

Ghasemi A., Ranjbar R. and Amani J. (2014). In silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate. Iranian J. Basic. Med. Sci. 17, 172-180.

Geourjon C. and Deléage G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11, 681-684.

Goel D. and Bhatnagar R. (2012). Intradermal immunization with outer membrane protein 25 protects Balb/c mice from virulent B. abortus 544. Mol. Immunol. 51, 159-168.

Hopp T.P., Woods K.R. (1981). Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA. 78(61), 3824-3828.

Karplus P.A. and Schulz G.E. (1985). Prediction of chain flexibil

 

      ity in proteins. Naturwissenschaften72, 212-213.

Karthik K., Rathore R., Verma A.K., Tiwari R. and Dhama K. (2013). Brucellosis – still it stings? Livest. Technol. 2(10), 8-10.

Kyte J. and Doolittle R.F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105-132.

Li Y., Liu X. and Zhu Y. (2013). Bioinformatic prediction of epitopes in the Emy162 antigen of Echinococcus multilocularis. Exp. Ther. Med. 6, 335-340.

Noguchi H., Kato R., Hanai T., Matsubara Y., Honda H., Brusic V. and Kobayashi T. (2002). Hidden Markov modelbased prediction of antigenic peptides that interact with MHC class II molecules. J. Biosci. Bioeng. 94(3), 264-270.

Pappas G., Papadimitriou P., Christou L. and Akritidis N. (2006). Future trends in human brucellosis treatment. Exp. Opin. Invest. Drugs. 15, 1141-1149.

Ponomarenko J.V. and van Regenmortel M.V.H. (2009). B-cell Epitope Prediction. Structural Bioinformatics, Bourne.

Pavlovi M.D.,  Jandrli D.R. and Miti N.S. (2014). Epitope distribution in ordered and disordered protein regions. Part B-Ordered regions and disordered binding sites are targets of T- and B-cell immunity. J. Immunol. Methods. 407, 90-107.

Sekhavati M.H., Majidzadeh Heravi R., Tahmoorespur M., Yousefi S., Abbassi-Daloii T. and Akbari R. (2015). Cloning, molecular analysis and epitopics prediction of a new chaperone GroEL Brucella melitensis antigen. Iranian J. Basic. Med. Sci. 18, 499-505.

Shen Z.G., Yan P. and He W. (2010). Prediction of the secondary structure and the B cell epitope of the extracellular domain of FSHR. J. Chongqing Med. Univ. 35, 1317-1320.

Simon G.G., Hu Y. and Khan A.M. (2010). Dendritic cell mediated delivery of plasmid DNA encoding LAMP / HIV-1 Gag fusion immunogen enhances T cell epitope responses in HLA DR4 transgenic mice. PLoS One. 5(1), 8574.

Steere A.C., Drouin E.E. and Glickstein L.J. (2011). Relationship between immunity to Borrelia burgdorferi outer-surface protein A (OspA) and Lyme arthritis. Clin. Infect. Dis. 52(3), 259-265.

Sun P., Ju H., Liu Z., Ning Q., Zhang J., Zhao X., Huang Y., Ma Z. and Li Y. (2013). Bioinformatics Resources and Tools f or Conformational B-Cell Epitope Prediction. Comput. Math. Methods. Med. 2013, 1-11.

Tabatabai L.B. and Pugh Jr. (1995). Modulation of immune responses in Balb/c mice vaccinated with Brucella abortus Cu-Zn superoxide dismutase synthetic peptide vaccine. Vaccine. 12, 919-924.

Toes R.E., Nussbaum A.K. and Degermann S. (2001). Discrete cleavage motifs of constitutive and immuno proteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 194(1), 1-12.

Vizcaíno N., Zygmunt M.S., Verger J.M., Grayon M. and Cloeckaert A. (1997). Localization and characterization of a specific linear epitope of the Brucella DnaK protein. FEMS Microbiol. Lett. 154, 117-122.

Wang W., Wu J., Qiao J., Weng Y., Zhang H., Liao Q., Qiu J., Chen C., Allain J.P. and Li C. (2014). Evaluation of humoral and cellular immune responses to BP26 and OMP31 epitopes in the attenuated Brucella melitensis vaccinated sheep. Vaccine. 32(7), 825-833.

Wass M.N., Kelley L.A. and Sternberg M.J.E. (2010). 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids. Res. 38, 469-473.

Wass M.N. and Sternberg M.J. (2009). Prediction of ligand binding sites using homologous structures and conservation at CASP8. Proteins. 77(9), 147-151.

Yamaguchi H., Miura H. and Ohsumi K. (1996). Analysis of the epitopes recognized by mouse monoclonal antibodies directed to Yersinia enterocolitica heat-shock protein 60. Microbiol. Immunol. 40, 77-80.

Zhang Z.W., Zhang Y.G. and Wang Y.L. (2010). Screening and identification of B cell epitopes of structural proteins of foot-and-mouth disease virus serotype Asia1. Vet. Microbiol. 140(1), 25-33.

Zhang W., Liu J., Zhao M. and Li Q. (2012). Predicting linear B- cell epitopes by using sequence-derived structural and physico-chemical features. Int. J. Data. Min. Bioinform. 6, 557-569.