The Effect of Urea-Treated Barley Straw on the Reproductive Performance and Post-Partum Ovarian Activity of Libyan Barbary Sheep

F. Akraim1*, A.F. Magid2, M.S. Rahal2, A. Ahmad2 and M. Aboshwariib3

1 Omar Al-Mukhtar University, Faculty of Agriculture, Al-Baida, Libya
2 Tripoli University, Faculty of Agriculture, Tripoli, Libya
3 Tripoli University, Faculty of Veterinary Medicine, Tripoli, Libya

ABSTRACT

Forty ewes (3-6 years of age, average weight 41.2 kg) were randomly chosen from the flock of the sheep experiment station of Tripoli University. Ewes were divided into two groups, control group (C) received untreated barley straw and treatment group (T) received barley straw treated with 10% urea solution applied as 40% (V/W). Barley straw was sprayed with molasses when fed to animals. Both groups received commercial concentrate according to physiological state. Experiment started by introducing the rams in June. Average concentrations of progesterone did not significantly differ and were 2.96 ng/mL and 2.38 ng/mL during 9 weeks for T and C groups, respectively. In T group, 53.3% of ewes were fertilized during the early period (two weeks after the introduction of the rams) and maintained levels of 3.5 ng/mL of progesterone. However, no ewes of C group were fertilized in this period. Conception rate, prolificacy and viability were 83.3%, 1.07 lamb/ewe, 93.75% and 78.94%, 1.13 lamb/ewe, 88.23% for T and C groups, respectively. These differences were not significant. Progesterone concentrations were below of 0.07 ng/mL during 9 weeks post-partum in both groups. Cereal straws can be treated with urea without adverse effects on reproductive performance.

KEY WORDS conception rate, ovarian activity, progesterone, urea.

INTRODUCTION

Appropriate nutritional management is essential for successful reproduction (Chagas et al. 2007). There is a shortage of forage in arid and semi arid environments and cereal straws represent the basic diet of cattle and sheep for long period of year. Urea treatment is a method in which straw is treated by ammonia released from urea, and it is technically feasible method to improve the nutritive value of straws (Schiere and Nell, 1993). Urea treatment was significantly improved the voluntary intake and apparent digestibility of organic matter, crude fibre and hemicellulose (Cloete et al. 1983). Cereal straws can be treated with urea and incorporated in ewe’s diet without negative effects on growth parameters of their lambs (Akraim et al. 2009). High roughage diets can be supplemented with urea without reducing reproductive performance (Thompson et al. 1973). Using urea-treated rice straw has been significantly improved reproductive performance of dairy cattle in Vietnam (Doan et al. 1999).

However, high dietary protein leads to elevated systemic concentrations of ammonia and urea, which have been associated with reduced fertility in cattle (Canfield et al. 1990). Excess urea in ewes diet (30g vs. 15 g/kg feed) ele-
vates urea and ammonia in plasma and in uterus, with an
associated increase in embryo mortality (McEvoy et al.
1997). Santos (2001) suggested that toxic compounds of
nitrogen metabolism (ammonia or urea) may affect uterine
environment and impair sperm, ova, or early embryo sur-
vival, or reduced plasma progesterone concentration. Fer-
guson et al. (1993) indicated that conception rate in dairy
cattle decreases with serum urea N of > 14.9 mg/dL. The
use of urea might retard puberty age and fertility in young
growing ram lambs (Abi Saab et al. 2003). In many cases,
negative effects were mentioned only when urea was ap-
plicated in excess. Since that the treatment of straw with urea
may find wide application in small holder sector in Libya,
the aim of this experiment was to investigate the effect of
dietary urea-treated barley straw on reproductive perform-
ance of Libyan Barbary sheep.

MATERIALS AND METHODS

This study was performed in the sheep experiment station
of the Faculty of Agriculture of Tripoli University. Forty
Barbary ewes (3-6 years, average weight of 41.2 kg) were
randomly chosen from the flock. There were no reproduc-
tive problems reported in the flock. Ewes were subdivided
in two groups each with 20 ewes. The study began by in-
troducing two rams (selected on the basis on health status
and physical appearance) per group in June. One ewe of
control group and two of treatment group were died. The
two groups received supplement of commercial concentrate
according to their physiological stage, based on corn and
soybean meal, and offered (ad libitum) barley straw (con-

Water was offered ad libitum. Sheep mineral blocks were
provided. Barley straw was treated with 10% urea solution
applied as 40% (V/W). Chemical composition of commer-
cial concentrate, treated and untreated straw are presented
in table 1.

Table 1 Chemical composition of commercial concentrate (CC), urea-
treated (UBS) and untreated (BS) barley straw

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>UBS</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM (%)</td>
<td>89.1</td>
<td>93.5</td>
<td>98</td>
</tr>
<tr>
<td>CP (%)</td>
<td>18</td>
<td>12.9</td>
<td>2.6</td>
</tr>
<tr>
<td>EE (%)</td>
<td>1.8</td>
<td>2</td>
<td>6.1</td>
</tr>
<tr>
<td>CF (%)</td>
<td>5.1</td>
<td>30</td>
<td>37.8</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>5.1</td>
<td>8.7</td>
<td>7.5</td>
</tr>
</tbody>
</table>

DM: dry matter; CP: crude protein; EE: ether extracts and CF: crude fibre.

Barley straw treated or untreated with urea was sprayed
with molasses when fed to animals. Adaptation period of 15
days to urea was carried. Blood samples were collected
from jugular veins twice weekly for 9 weeks after the intro-
duction of rams and weekly after lambing for 60 days.
Samples were centrifuged and plasma was frozen until
analysis for progesterone.

Progesterone analysis was carried with RIA technique
according to Assay protocol version 3.1, (1996). Concep-
tion rate (ewes lambed/total ewes), viability (lambs born
live/lambs born) and prolificacy (lambs born/ewes lambed)
were calculated for each group. Results of progesterone
concentration were presented as means and compared with
unpaired t-test. Conception rate, viability and prolificacy
were analyzed by the chi-square test (Snedecor and Coch-
ran, 1956).

RESULTS AND DISCUSSION

Progesterone concentration in T and C groups for 9 weeks
after the rams introduction are presented in Figure 1.

![Figure 1 Progesterone concentrations in ewes fed with barley straw treated (T) or not (C) with urea, during 9 weeks after the rams introduction](image)

During the first two weeks, progesterone concentration
was below 2 ng/mL. The hormone concentration in group T
increased rapidly up to 3 ng/mL in the third week and after
that began to increase gradually.

However, in C group, the progesterone concentration did
pass the level of 2 ng/mL only in the fifth week. These re-

Literature data not support these results and mentioned
(Thompson et al. 1973, in sheep with 2.1% urea; Bond et
al. 1973, in beef cattle with 3.4% urea) that diets containing
urea did not affect fertilization rate at first service. In con-
trary, Plasma progesterone concentration was altered in
alpine goats fed urea, and the hormone levels on the 15th
day after estrus were linearly reduced according to the per-
centage of urea in the diets (Alves et al. 2011).
Adaptation of the animals to urea may affect reproductive performance. Dawuda et al. (2002) indicated that there was no deleterious effect on the embryos recovered 7 days after breeding when urea feeding was initiated during the previous mid-luteal phase, and the introduction of a similar diet 10 days later, at the time of insemination, was deleterious. In our experiment, adaptation to the urea began 15 days before the introduction of the rams.

It’s not clear to conclude a positive specific effect of urea on early mating period of this experiment and additional data are needed.

Urea-treated barley straw was offered ad libitum and the feed intake was not measured in our experiment, so the comparison with the experiments in the literature is difficult. Treatment of barley straw with urea increased the digestible energy value of straw by up to 20% (Hadjipanayiotou, 1982).

Increased dietary energy (Dunn and Moss, 1992) increases ovulation rate in ewes, but this increase was accompanied by an increase in body weight. Conception rate, viability and prolificacy in both groups are presented in Table 2.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Conception rate (%)</th>
<th>Prolificacy</th>
<th>Viability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>78.94</td>
<td>1.13</td>
<td>88.23</td>
</tr>
<tr>
<td>T</td>
<td>83.30</td>
<td>1.07</td>
<td>93.75</td>
</tr>
</tbody>
</table>

Prolificacy is low in Libyan Barbary sheep and ranged from 1.0 to 1.12/ewe (Magid et al. 1992). Conception rate, viability and prolificacy of ewes were not affected by the consumption of urea-treated barley straw in this study (P>0.05). Comparable results were reported on sheep (Thompson et al. 1973).

In dairy cattle, the intervals from calving to the onset of ovarian activity, oestrus and conception and the calving interval in urea-treated rice straw group were significantly shorter than those in the control group (Doan et al. 1999). Ovarian activity was monitored for 9 weeks after lambing by the plasma progesterone concentrations. The results are presented in Figure 2.

Progesterone concentrations were low and still below 0.4 ng/mL during 9 weeks post-partum and there was no significant difference between the two groups (P>0.05). Lower progesterone concentration indicates the absence of corpus luteum and the estrus cycle.

Progesterone concentration levels in corpus luteum stage of estrus cycle in sheep are about 2-3 ng/mL (Stabenfeldt et al. 1971). Benhaj et al. (1990) reported the absence of ovarian activity in Libyan Barbary sheep for 60 days after lambing.

CONCLUSION

It is difficult to conclude positive effects of urea on the early mating period under the conditions of this experiment and additional data is needed. Conception rate, viability, prolificacy and post-partum ovarian activity of ewes were not affected by the consumption of urea-treated barley straw. Post-partum progesterone concentration was not affected by the consumption of urea-treated barley straw. There was no ovarian activity in the two groups for 60 days post-partum in agreement with previous studies on Libyan Barbary sheep. Urea can be used to upgrade the nutritive value of straws at the levels mentioned in this experiment without detrimental effects on the reproductive performance of sheep.

ACKNOWLEDGEMENT

Equipments and materials necessary for progesterone analysis were gratefully supplied by IAEA, Joint FAO / IAEA Program.

REFERENCES


Data on the occurrence of estrus showed that ovarian function and fertility in cows fed urea were equal to that of cows fed soybean meal (Thompson et al. 1973).
The Effect of Urea on the Reproduction of Sheep


