The Effect of Choline Chloride Supplementation on Performance Parameters and Carcass Characteristics of Broiler

Document Type: Research Article


1 Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Science University, Khulshi, Chittagong-4225, Bangladesh

2 Department of Physiology, Pharmacology and Biochemistry, Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Science University, Khulshi, Chittagong-4225, Bangladesh

3 Department of Pathology, University of Agricultural, Mymensingh, Bangladesh


Two hundred and forty Hubbard Classic broiler chicks were used in a 35 day trial at Chittagong Veterinary and Animal Science University farm, Bangladesh to study the effects of supplemental choline chloride on performance parameters, carcass characteristics and their association in commercial broiler. All birds had free access to ad libitum feeding. Birds were fed four types of diet i.e. diet without choline chloride (T0), diet containing 0.1 g / 100 g choline chloride (T1), 0.2 g / 100 g choline chloride (T2) and 0.3 g / 100 g choline chloride (T3). Results indicated that weight gain differed (P<0.05) at 5th week irrespective of the level of supplemental choline. Similar to weight gain, feed intake also differed (P<0.05) at 5th week. However, feed conversion ratio differed from the 3rd to the 5th weeks. Weight gain and feed intake were positively correlated and feed conversion ratio was negatively correlated with carcass parameters. It could therefore be inferred that increasing levels of supplemental choline may progressively improve weight gain, feed efficiency and carcass characteristics in commercial broiler.


AOAC. (1990). Official Methods of Analysis. Vol. I. 15th Ed. Association of Official Analytical Chemists, Arlington, VA.
Artom C. (1953a). Lipid metabolism.Ann. Rev. Biochem. 22, 211-232.
Artom C. (1953b). Role of choline in the oxidation of fatty acids by the liver. J. Biol. Chem. 205, 101-111.
Artom C. (1953c). Role of choline in the oxidation of fatty acids by the isolated liver.Nature.171, 347-348.
Artom C. (1956). Effects of some dietary factors on the metabolism of fatty acids in liver preparations.J. Biol. Chem. 223, 389-398.
Baker D.H., Edwards H.M., Strunk C.S., Emmert J.L., Peter C.M., Mavromichalis I. and Parr T.M. (1999). Single versus multiple deficiencies of methionine, zinc, riboflavin, vitamin B6, and choline elicit surprising growth responses in young chicks. J. Nutr. 129, 2239-2246.
Baker D.H., Halpin K.M., Czarnecki G. and Parsons C.M. (1983). The choline methionine interrelationship for growth of the chick. Poult. Sci. 62, 133-137.
Blair M.E., Potter L.M., Bliss B.A. and Shelton J.R. (1986). Methionine, choline and sulfate supplementation of practical type diets for young turkeys. Poult. Sci. 65, 130-137.
Duncan D.B. (1955). Multiple ranges and multiple ‘F’ test. Biometrics. 11, 1-42.
Emmert J.L. and Baker D.H. (1997). A chick bioassay approach for determining the bioavailable choline concentration in normal and overheated soybean meal, canola meal and peanut meal. J. Nutr. 27, 745-752.
Garrow T.A. (2007). Choline. Pp. 459-487 in Handbook of Vitamins. J. Zempleni, R.B. Rucker, D.B. McCormick and J.W. Suttie, Eds. Boca Raton (FL): CRC Press.
Gomez A.K. and Gomez A.A. (1984). Statistical Procedures for Agricultural Research. Willy and Sons. New York.
Griffith M., Olinde A.J., Schexnailder R., Davenport R.F. and Mcknight W.F. (1969). Effect of choline, methionine and vitamin B12 on liver fat, egg production and egg weight in hens.Poult. Sci. 48, 2160-2172.
Hudgins L.C., Hellerstein M.K., Seidman C.E., Neese R.A., Tremaroli J.D. and Hirsch J. (2000). Relationship between carbohydrate-induced hypertriglyceridemia and fatty acid synthesis in lean and obese subjects. J. Lipid Res. 41, 595-604.
INRA. (1997). Nutrition of laying hens. Pp. 214-219 in Feeding of Non-Ruminant Livestock.J. Wiseman, Ed. Butterworth and Co. Ltd., London.
Jones R. (1984). A Standard Method of Dissection of Poultry for Carcass Analysis. West of Scottland Agricultural College, Technical Bulletin No. 222. Ary. Scottland.
Jukes T.H. (1940). Effects of choline and other supplements on perosis. J. Nutr. 20, 445-458.
NRC. (1994). Nutrient Requirements of Poultry. 9th Rev. Ed. National Academy Press, Washington, DC.
Ohta Y. and Ishibashi T. (1995). Effect of dietary glycine on reduced performance by deficient and excessive methionine in broilers. Jpn. Poult. Sci. 32, 81-89.
Pearce J. (1975). The effects of choline and inositol on hepatic lipid metabolism and the incidence of the fatty liver and kidney syndrome in broilers.Br. Poult. Sci. 16, 565-570.
Pesti G.M., Harper A.E. and Sunde M.L. (1980). Choline / methionine nutrition of starting broiler chicks. Three models for estimating the choline requirement with economic considerations. Poult. Sci. 59, 1073-1081.
Rama Rao S.V., Sunder G.S., Reddy M.R., Praharaj N.K., Raju M.V. and Panda A.K. (2001). Effect of supplementary choline on the performance of broiler breeders fed on different energy sources. Br. Poult. Sci. 42, 362-367.
Scott M.L., Nesheim M.C. and Young R.J. (1982). Nutrition of the Chicken. Publishers, Ithaca, New York.
Singh R.A. (1980). Poultry Production. Ramanath Mazumder Street, Ballygunj, Kolkata. Kalyani Publishers, India.
SPSS. (2007). SPSS for Windows, Version 16.0. Chicago, SPSS Inc.
Stata. (2009). Stata Statistical Software. Version 11. TX: StataCorp LP., College Station, USA.
Swain B.K. and Johri T.S. (2000). Effect of supplemental methionine, choline and their combinations on the performance and immune response of broilers.Br. Poult. Sci. 41, 83-88.
Tsiagbe V.K., Cook M.E., Harper A.E. and Sunde M.L. (1987). Efficacy of cysteine in replacing methionine in the immune responses of broiler chicks.Poult. Sci. 66, 1138-1146.
Whitehead C.C. and Randall C.J. (1982). Interrelationships between biotin, choline and other Bvitamins and the occurrence of fatty liver and kidney syndrome and sudden death syndrome in broiler chickens.Br. J. Nutr. 48, 177-184.
Winer B.J., Brown R. and Michels K.M. (1991). Statistical Principles in Experimental Design. McGraw-Hill, New York.