ABSTRACT

This study was conducted to determine the chemical composition and metabolizable energy of poultry by-product meal (PBPM) from two slaughterhouses in Iran. Samples were analyzed for dry matter, crude protein, ash, ether extract and gross energy. The amounts of calcium, phosphorus, sodium, potassium, Magnesium, Iron, Manganese, copper and Zinc were determined. The apparent metabolizable energy (kcal/kg) (AME), apparent metabolizable energy corrected for nitrogen (kcal/kg) (AMEn), true metabolizable energy (kcal/kg) (TME) and true metabolizable energy corrected for nitrogen (kcal/kg) (TMEn) were determined based on sibbald’s procedure. For this purpose, twelve 230-day old New Hampshire males were used. There was no significant difference (P<0.05) between kinds of metabolizable energies in samples. The standardized digestible amino acid content also determined. The highest and lowest amount belongs to leucine and tryptophan. Results from this study showed there is different between two samples of PBPM.

KEY WORDS AME, AMEn, amino acid, chemical composition, poultry by-product meal (PBPM), TME, TMEn.

INTRODUCTION

Poultry by-product meal (PBPM) is a valuable animal protein source in poultry rations. Although PBPM primarily considered as a source of protein, it also contains substantial quantities of energy, calcium, highly available phosphorus and essential fatty acids (Kristein, 2005; Dozier, 2000; Waldroup and Adams, 1994; Sell and Jeffry, 1996; Waldroup, 1999). Protein, ash and fat contents, protein quality and amino acid digestibility of PBPM can vary greatly depending on processing system (extraction by pressure or by organic solvents), processing temperature and duration and raw material sources (Johnson and Parsons, 1997; Parsons et al. 1997; Wang and Parsons, 1998; Shirley and Parsons, 2000; Shirley and Parsons, 2001). Increasing in bone or ash content has been showed to have a negative effect on protein and energy concentrations (Dale, 1997; Mendez and Dale, 1998; Wang and Parson, 1998). The ME content and the nutrient digestibility of PBPM are affected by many factors such as origin, processing methods of the product, levels of feeding and methods for measuring digestibility (Johns et al. 1986; Ravindran and Bryden, 1999). While protein, moisture, fat and other components can be quickly ascertained by proximate analysis, metabolizable energy determination requires more elaborate assays. Although TMEn is a better indicator for energy requirements in poultry but because of some limitations on TMEn (such as inadequately that exist for the necessary information), AMEn has been accepted for poultry and is common now (Cole and Haresign, 1989; NRC, 1994; Sibbald, 1987; Wolynetz and sibbald, 1984). Pesti et al. (1986) reported a high negative correlation between AMEn and ash / calcium content and a high positive correlation between MEa and gross energy. Therefore, the aim of this
study was to determine the chemical composition, amino acids and types of metabolizable energy of two samples of poultry by-product meal (PBPM) and comparison with each other.

MATERIALS AND METHODS

Two samples of PBPM from different slaughterhouse were collected and sent to the laboratory. Samples were analyzed for dry matter (DM), crude protein (CP), gross energy (GE), Ash, ether extract (EE), calcium (Ca), phosphorus (P), sodium (Na), potassium (K), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn). DM, CP, Ash and EE were determined by proximate analysis (AOAC, 2000). Ca, P, Na, K, Mg, Fe, Mn, Cu and Zn were determined by atomic absorption spectrophotometry. GE content was determined in an adiabatic bomb calorimeter. To determine amino acids, near infrared reflectance (NIR) was used. Twelve New Hampshire males with similar body weight (35±5) were used for determination of metabolizable energy. Poultry excreta were collected by trays under the cages. After force-feeding, just water was available for next 48 h. Excreta samples were analyzed for DM, EE, nitrogen, ash (AOAC, 2000) and GE determined in an adiabatic bomb calorimeter. Excreta samples were analyzed for DM, EE, nitrogen, ash (AOAC, 2000) and GE determined in an adiabatic bomb calorimeter. Finally data used for calculation of AME, AMEn, TME and TMEn with as follow and comparison of two sample with t-test method was performed (SPSS, 2011).

\[
\text{AME} = \frac{\text{(Fi}\times\text{GE}_{\text{f}}) - (\text{E}\times\text{GE}_{\text{e}})}{\text{Fi}}
\]

\[
\text{AMEn} = \frac{\left(\text{(Fi}\times\text{GE}_{\text{f}}) - (\text{E}\times\text{GE}_{\text{e}}) - (\text{NR}\times\text{K})\right)}{\text{Fi}}
\]

\[
\text{TME} = \frac{\left(\text{(Fi}\times\text{GE}_{\text{f}}) - (\text{E}\times\text{GE}_{\text{e}}) + (\text{FEm} + \text{UE}_{\text{e}})\right)}{\text{Fi}}
\]

\[
\text{TMEn} = \frac{\left(\text{(Fi}\times\text{GE}_{\text{f}}) - (\text{E}\times\text{GE}_{\text{e}}) - (\text{NR}\times\text{K}) + (\text{FEm} + \text{UE}_{\text{e}}) + (\text{NR_{0}\times K})\right)}{\text{Fi}}
\]

\[
\text{NR} = \left(\text{Fi}\times\text{Nf}\right) - (\text{E}\times\text{Ne})
\]

Where:

AME: apparent metabolizable energy (kcal/g).

AMEn: apparent metabolizable energy corrected for nitrogen (kcal/g).

TME: true metabolizable energy (kcal/g).

TMEn: true metabolizable energy corrected for nitrogen (kcal/g).

Fi: feed intake (g).

E: excreta (g).

GEf: gross energy of feed sample (kcal/g).

GEe: gross energy of excreta (kcal/g).

\[
\text{FE_{m}}: \text{metabolic faecal energy (kcal/g)}.
\]

\[
\text{UE}_{e}: \text{indigenous urinary energy (kcal/g)}.
\]

NR: nitrogen retention (g).

Nf: feed nitrogen (%).

Ne: faecal nitrogen (%).

NR0: nitrogen retention at zero level for control group (g).

K= nitrogen retention corrected coefficient (8.37 kcal/g for each g N).

RESULTS AND DISCUSSION

In the present study AME, AMEn, TME and TMEn in PBPM showed in Table 1. In this study the comparison of two samples using t-test was performed and significant difference between the two samples in the types of energy metabolism was not observed. All kinds of metabolizable energy in sample B were greater than sample A. The values of TMEn were less than of values from Jafari et al. (2011a) and were more than NRC (1994). TME amount of poultry by-product meal (PBPM) in sample B is 3595 kcal/kg that with the amounts reported by the Jafari et al. (2011a) is equal and from sample A (3131 kcal/kg) is more both samples A and B from the amount reported by Kalvandi et al. (2011) (3696 kcal/kg) are less. The reason for this is difference in chemical composition and crude energy.

TME amount of PBPM in sample B is higher than sample A and both samples A and B from the amounts reported by the Geshlog et al. (2010) and Robbins and Firman (2006) (3031 and 2643 kcal/kg, respectively) are more. The reason for this is difference in chemical composition and crude energy.

The amount of TMEn will be higher than AMEn that is consistent with results Jafari (2010b). This difference is due to endogenous energy or bird maintenance costs that have not the source of oral and fecal fraction of energy. Therefore, because the maintenance costs don’t appear in energy metabolism, then its value will be true of metabolism energy (Sibbald, 1989).

TME was also much higher than TMEn that is consistent with results Jafari (2010b). The reason is because of the increased nitrogen excretion in hungry rooster was significantly reduced by the amount TMEn.

The gross energy of sample B was higher than sample A (Table 2). These values in both of samples are higher than values from Najafabadi et al. (2007) and Pesti et al. (1986). They reported that values from different samples were 5645 and 4842 kcal/kg, respectively. However in this study values were more than 6000 kcal/kg. The dry matter in these two samples was 96.62% in sample A and 92.96% in sample B. These values are lower than values reported by Najafabadi et al. (2007). Resulted that mean of dry matter of 10 samples from different slaughterhouse was 94.8%.
Other scientists (Bhargava and O’Neil, 1975; Senkoylu et al. 2005; Cassio et al. 1989; Pesti et al. 1986) resulted values between 93-95.5%. However Han and Parsons (1990) reported dry matter of PBPM 90.86%.

Results from experiments show there is variation between samples from standpoint of nutritional value. Method of sample preparation, % of bone, meat, feathers, temperature and pressure during process and other factors effect on sample quality.

Crude protein in sample A was greater than sample B (13.5%, 11.8% and 11.8%, respectively). High crude fat value of poultry by-product meal (PBPM) in sample B (29.15%) is higher than sample A (21.75%). Crude protein in sample A was greater than sample B (130.85 vs. 130.7% respectively) is more and sample A is consistent with results of Najafabadi et al. (2005), Cassio et al. (2010), Jafari et al. (2007) and Senkoylu et al. (2010), NRC (1994), Najafabadi et al. (2007), Robbins and Firman (2006) (3.51 and 5.16%, respectively) is less but sample B from the amounts reported by Hosseinizehadeh et al. (2010), Geshlog et al. (2010) and Sahraei et al. (2010) that is 1.3% more and those are higher sample A. Because chicken foot has feed intake in Iran and also because of high fat, reduce levels of other nutrients and because poultry by-product meal contains feather, so it can also cause dilution of the minerals calcium and phosphorus.

Magnesium amount both samples A and B is 0.1% that consistent with results of Najafabadi et al. (2007) reported 0.06% and from the amounts reported by the Dozier et al. (2003) and NRC (1994) that reported the 0.15 and 0.22% respectively are less. The reason is that there is magnesium in skeletal tissues and foot has feed intake in Iran and don’t use in slaughter, so this amount is less.

Sodium amount of poultry by-product meal (PBPM) in sample A is higher than sample B (1.31 vs. 0.73%) and both samples A and B from the amounts reported by NRC (1994), Najafabadi et al. (2007) and Robbins and Firman (2006) (0.4, 0.52 and 0.56%, respectively).

Potassium amount of PBPM in sample A is higher than sample B (0.16 vs. 0.55%) and these values are different from values reported by NRC (1994) and Dozier et al. (2003) (0.55 and 0.51%, respectively) and both samples A and B from the amount reported by Najafabadi et al. (2007) 0.31%.

There is potassium in interceptive like the heart, intestines, liver, and gizzard and being high may be due to changes in the composition of these products.

Iron amount of PBPM in sample A is higher than sample B (1308.5 vs. 945 mg/kg) and both samples A and B from the amount reported by NRC (1994) and Najafabadi et al. (2007) (440 and 623 mg/kg, respectively) are more.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Comparison of mean metabolizable energy in two samples of poultry by-product meal (PBPM) (kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>AME</td>
</tr>
<tr>
<td>Sample A</td>
<td>3497±561.68</td>
</tr>
<tr>
<td>Sample B</td>
<td>3749±766.06</td>
</tr>
<tr>
<td>P-value</td>
<td>0.711</td>
</tr>
</tbody>
</table>

AME: apparent metabolizable energy; AMEn: apparent metabolizable energy corrected for nitrogen; TME: true metabolizable energy and TMEa: true metabolizable energy corrected for nitrogen.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Composition of DM, CP, Ash, EE and GE in two samples of poultry by-product meal (PBPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>DM (%)</td>
</tr>
<tr>
<td>Sample A</td>
<td>96.62</td>
</tr>
<tr>
<td>Sample B</td>
<td>86.73</td>
</tr>
</tbody>
</table>

DM: dry matter; CP: crude protein; EE: ether extract; Ash: nitrogen; GE: gross energy.
Because blood contains large amounts of iron, and after cutting the tissue may mixed with poultry by-product meal used with blood. These numbers are different. Copper amount of poultry by-product meal (PBPM) in sample B is higher than sample A (12.9 vs. 10.6 mg/kg) and samples A consistent with results of Najafabadi et al. (2007) reported 9.3 mg/kg and form the amounts reported by NRC (1994) and Dozier et al. (2003) (14 and 22 mg/kg, respectively) is less.

This is because the liver is a large amount of copper and because it has feed intake in Iran, so it is less than other countries.

Table 3 Composition of major and trace minerals in two samples of poultry by-product meal (PBPM)

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Ca %</th>
<th>P %</th>
<th>Na %</th>
<th>K %</th>
<th>Mg %</th>
<th>Fe (mg/kg)</th>
<th>Mn (mg/kg)</th>
<th>Cu (mg/kg)</th>
<th>Zn (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample A</td>
<td>1.49</td>
<td>1.293</td>
<td>1.31</td>
<td>0.16</td>
<td>0.10</td>
<td>1308.5</td>
<td>49.1</td>
<td>10.6</td>
<td>71.2</td>
</tr>
<tr>
<td>Sample B</td>
<td>1.02</td>
<td>1.208</td>
<td>0.73</td>
<td>0.55</td>
<td>0.10</td>
<td>945</td>
<td>15.1</td>
<td>12.9</td>
<td>66.6</td>
</tr>
</tbody>
</table>

The reason for this difference is due to amount of crude protein in the samples A, B by the Azman and Dalkilic (2006) (62.8, 51.37, 64.58 and 58.6%, respectively). Wang et al. (2006) (62.8, 51.37, 64.58 and 58.6%, respectively). Wang et al. (2006) (62.8, 51.37, 64.58 and 58.6%, respectively). Wang et al. (2006) (62.8, 51.37, 64.58 and 58.6%, respectively). Wang et al. (2006) (62.8, 51.37, 64.58 and 58.6%, respectively).

Table 4 Composition of standardized digestible amino acid in two samples of poultry by-product meal (PBPM) (DM basis)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Met</th>
<th>Cys</th>
<th>Met+Cys</th>
<th>Lys</th>
<th>Thr</th>
<th>Try</th>
<th>Phe</th>
<th>Arg</th>
<th>Iso</th>
<th>Lue</th>
<th>Val</th>
<th>His</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample A</td>
<td>0.606</td>
<td>0.943</td>
<td>1.562</td>
<td>1.675</td>
<td>1.607</td>
<td>0.385</td>
<td>1.930</td>
<td>2.268</td>
<td>1.637</td>
<td>3.259</td>
<td>2.223</td>
<td>0.816</td>
</tr>
<tr>
<td>Sample B</td>
<td>0.496</td>
<td>0.776</td>
<td>1.277</td>
<td>1.225</td>
<td>1.265</td>
<td>0.316</td>
<td>1.571</td>
<td>1.785</td>
<td>1.253</td>
<td>2.616</td>
<td>1.789</td>
<td>0.663</td>
</tr>
</tbody>
</table>

The reason for this difference is due to amount of crude protein in the samples A, B by the Azman and Dalkilic (2006) (62.8, 51.37, 64.58 and 58.6%, respectively). Wang et al. (2006) (62.8, 51.37, 64.58 and 58.6%, respectively).

Acknowledgement

We offer our thanks to chairman, vice president and personals of Karaj Islamic Azad University, Iranian Animal Science Research Institute that had brought these research possibilities.

References

